If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4-3y(y-4/y)=41-y^2
We move all terms to the left:
4-3y(y-4/y)-(41-y^2)=0
Domain of the equation: y)!=0We add all the numbers together, and all the variables
y!=0/1
y!=0
y∈R
-(41-y^2)-3y(+y-4/y)+4=0
We multiply parentheses
-(41-y^2)-3y^2+12y^2+4=0
We get rid of parentheses
y^2-3y^2+12y^2-41+4=0
We add all the numbers together, and all the variables
10y^2-37=0
a = 10; b = 0; c = -37;
Δ = b2-4ac
Δ = 02-4·10·(-37)
Δ = 1480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1480}=\sqrt{4*370}=\sqrt{4}*\sqrt{370}=2\sqrt{370}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{370}}{2*10}=\frac{0-2\sqrt{370}}{20} =-\frac{2\sqrt{370}}{20} =-\frac{\sqrt{370}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{370}}{2*10}=\frac{0+2\sqrt{370}}{20} =\frac{2\sqrt{370}}{20} =\frac{\sqrt{370}}{10} $
| 5=9a-4 | | 5x^2-28x+23=0 | | 3x–5+23x–9=0 | | 3b-2b(1+3)=15 | | 6x+8=20x-8 | | (x-4)^2-(7)=0 | | 1/3x(12-x)=38 | | (x-4)^2=7 | | 8x^2-92x-156=0 | | v^2-12v+21=1 | | 1/3x+(12-x)=39 | | 8/x=15/225 | | 4x^2+32x=- | | 4*(x-2)^2=25 | | 2x(x+4)=x+4 | | 8k^2-16k-10=0 | | 4*(x-2)=25 | | 1/3=9/k | | 4x-7x-5=0 | | 1/10=k/1 | | 4(2+x)=10 | | 4x^2-96=4 | | -4f^2+48f+68=0 | | 3x-1/4-x+2/2=1/4 | | 5x-8=-6x+14 | | a2=64 | | 1200+45n=1800=60n | | (x-3)^2-(3x-2)^2=0 | | 8x(-8x)=9 | | 2x-(x/x-1)=1+(1/x-1) | | 3u^2–12u=111 | | X+x.3=120 |